
Abstract. Relativistic basis sets of double-zeta, triple-
zeta, and quadruple-zeta quality have been optimized for
the 5d elements Hf–Hg. The basis sets include self-con-
sistent-field exponents for the occupied spinors and for
the 6p shell, exponents of correlating functions for the
valence shell and the 4f shell, and exponents of func-
tions for dipole polarization of the valence shell . A finite
nuclear size was used in all optimizations. Prescriptions
are given for constructing contracted basis sets. The
basis sets are available as an internet archive.
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1 Introduction

Relativistic effects have long been known to be impor-
tant for heavy elements [1]. However, in order to
perform calculations on molecules containing heavy
elements with existing codes and algorithms, Gaussian
basis sets are needed.

By far the majority of calculations on heavy elements
have been performed with relativistic effective core
potentials (ECPs) [2]. Many of the commonly used ECP
sets [3,4,5] are provided with basis sets of only double-
zeta (dz) or triple-zeta (tz) quality, though the basis sets
provided by the Stuttgart group [6] for their pseudo-
potentials tend to be larger. Christiansen [7] has offered
a prescription for the selection of correlating functions
for ECPs . Recently, this lack has been filled by a
number of new basis sets. For the 4p, 5p, and 6p ele-
ments, atomic natural orbital (ANO) basis sets have
been optimized by Osanai et al. [8], correlation-consis-
tent[9] basis sets of dz to quintuple-zeta quality have
been optimized by Peterson and workers [10,11] for the
small-core Stuttgart pseudopotentials [6], and for the 4p

and 5p elements, correlation-consistent basis sets of tz-
and quadruple-zeta (qz) quality have been optimized by
Martin and Sundermann [12] for the large-core Stuttgart
pseudopotentials. ANO basis sets of dz and tz quality
have very recently been optimized by Osanai et al. [13]
for the 5d elements, the subject of this paper.

In the 1980s, the Douglas–Kroll–Hess method [14,15]
emerged as the first viable all-electron method for vari-
ational inclusion of scalar relativistic effects. The method
was originally developed to second order, but has re-
cently been extended to third [16] and higher order [17].
Basis sets of approximately tz quality have been opti-
mized with the third-order Douglas–Kroll method [18],
but these basis sets do not include correlating or polar-
izing functions.

Four-component relativistic methods have also been
under active development in the last 20 years, resulting
in a combined effort with the codes MOLFDIR [19] and
Dirac [20], which provide self-consistent-field (SCF) and
correlated methods, in addition to properties. Basis sets
for four-component methods have also been under ac-
tive development by the author and collaborators. F�gri
[21] has published SCF basis sets of dz quality or better
for the entire periodic table. The author has published dz
and tz basis sets for the 4p, 5p, and 6p elements [22,23],
including core and valence correlating functions and
diffuse functions, in the style of the correlation-consis-
tent basis sets.

This paper reports relativistic dz, tz, and qz basis sets
for the 5d elements Hf–Hg. In addition to the SCF sets,
which include functions to describe the 6p shell, the basis
sets include high angular momentum correlating func-
tions for the 5d shell, the 5s and 5p shells, and the 4f shell,
and functions for dipole polarization of the 5d shell.
Prescriptions for the selection of primitive functions for
basis set flexibility and electron correlation are provided.

2 Methods

The methods used have been described previously
[22,23,24]. As for the previous basis sets, ‘-optimization
was employed. The SCF basis sets were optimized on the

Correspondence to: K. G. Dyall
e-mail: dyall@schrodinger.com

Regular article

Relativistic double-zeta, triple-zeta, and quadruple-zeta

basis sets for the 5d elements Hf–Hg

Kenneth G. Dyall

Schrödinger, Inc., 1500 SW First Ave Suite 1180, Portland, OR 97201, USA

Received: 7 December 2003 / Accepted: 26 July 2004 / Published online: 16 November 2004
� Springer-Verlag 2004

Theor Chem Acc (2004) 112: 403–409
DOI 10.1007/s00214-004-0607-y



average energy of the nonrelativistic dns2 configuration,
both in the SCF calculations and the multireference
singles and doubles configuration interaction (MR-
SDCI) calculations.

SCF optimizations were performed on the Hg atom to
determine the size of each angular space for each basis set,
dz, tz, and qz. A reference basis set was chosen and sets of
different size were optimized for each angular space to
determine the optimal set. This optimum was determined
by considering the distribution of exponents among the
maxima of all the orbitals, the energy balance between the
angular spaces, and the match with the already published
basis sets for the 6p main group elements.

The definition of dz, tz and qz for the basis sets
presented here needs some explanation. For the main
group elements, the number of exponents that describes
the outermost maximum of the s and p shells determines
the basis set designation. This number is usually also the
number of exponents in the next outermost maximum of
the s and p shells. To maintain good energy balance, the
number of exponents in the outermost maximum of the
outer core d shell is one higher: thus the dz basis sets for
the main group elements have three functions repre-
senting the outermost maximum of the sub-valence d
shell. This relation is carried over into the basis set
definitions for the 5d block. The dz basis set has three
exponents for the 5d outermost maximum, the tz basis
set has four, and the qz basis set has five.

Exponents were optimized for the 6p orbital in sep-
arate calculations on the 5dn6p2 configuration. Two,
three and four exponents were added for the dz, tz and
qz basis sets. For the dz and tz, basis sets, the outermost
four and six exponents were optimized, respectively,
covering the outermost maxima of the 5p and 6p orbi-
tals. The reason for reoptimizing more than just the
added functions is that the spacing of the exponents for
the 5p orbital is larger than for the inner orbitals because
the outermost exponents must approximate the expo-
nential tail of the orbital as well as the maximum. With
the addition of functions that are more diffuse, the
exponents for the 5p orbital no longer need to describe
the tail, and can be reoptimized. For the qz basis set, the
density of functions is higher, and some adjustment
further in than the 5p orbital was considered necessary,
so half the exponents in the set were reoptimized to
obtain a better distribution. This procedure was found
to give a better description of the SCF occupied orbitals
in the ground state as well.

Valence correlating functions were optimized in
MR-SDCI calculations on the dns2 configuration, using

the RAMCI program [25] modified for basis set
optimization. All states of this configuration, weighted
by their J value, were included in the optimization. For
the dz and tz basis sets, all single and double excitations
out of the 5d and 6s orbitals were included in the CI
expansion. Single and double excitations out of the 5d
shell only were considered for the qz basis set, to limit
the size of the CI calculations. The correlating function
spaces were 1f for the dz basis set, 2f 1g for the tz basis
set, and 3f 2g1h for the qz basis set.

The overlap of the correlating f functions with the
SCF functions that describe the 4f orbital was handled
as follows. For the dz basis set, the correlating f function
was added to the basis set, and the SCF f functions were
reoptimized. For the tz basis set, the largest correlating
exponent was larger than the smallest SCF exponent.
This SCF exponent was replaced by the two correlating
exponents, which resulted in a higher SCF energy, by
several millihartrees. The remaining SCF exponents were
then reoptimized, resulting in a lower SCF energy than
the original set. For the qz basis set, the three correlating
exponents were similar to the outer three SCF expo-
nents, but a bit smaller. The outer three SCF exponents
were replaced by the correlating exponents, and the
remaining SCF exponents reoptimized to regain most of
the lost energy resulting from the replacement.

Correlating functions for the 4f core shell were also
optimized in MR-SDCI calculations. Only those double
excitations out of the 4f shell that coupled to J ¼ 0 were
included in the CI expansion. The correlating function
spaces were 1g for the dz basis set, 2g1h for the tz basis
set, and 3g2h1i for the qz basis set.

Functions for dipole polarization of the valence
were determined as follows. For the dz basis sets, a
single f function was determined by maximizing the
polarizability calculated by second-order perturbation
theory. The basis states for the perturbation theory
consisted of the eigenfunctions of the Dirac Hamilto-
nian for the configurations generated by a single
d ! f excitation. For the tz basis sets, the most dif-
fuse correlating function is larger than the polarizing f
function for the dz basis set. The correlating f set was
therefore extended in an even-tempered sequence to
produce a diffuse f function. A diffuse g function was
determined by applying the same ratio used to extend
the f set to the correlating g function. Similarly, for
the qz basis sets, the f and g sets were extended in an
even-tempered sequence, and the ratio used for the g
set was applied to the h function to obtain a diffuse h
function.

Table 1 Configuration average
total self-consistent field (SCF)
energies in hartrees for un-
contracted basis set and nu-
merical calculations on the dns2

configuration

Element Double-zeta Triple-zeta Quadruple-zeta Numerical

Hf )15088.75090293 )15088.78438053 )15088.78632294 )15088.78660723
Ta )15616.59449126 )15616.62859031 )15616.63061342 )15616.63078504
W )16156.14828357 )16156.18322588 )16156.18532864 )16156.18541220
Re )16707.58194082 )16707.61794224 )16707.62012066 )16707.62013174
Os )17271.04304778 )17271.08025200 )17271.08250248 )17271.08244860
Ir )17846.74790481 )17846.78653312 )17846.78886276 )17846.78875058
Pt )18434.83201767 )18434.87219746 )18434.87460640 )18434.87443919
Au )19035.47050330 )19035.52441252 )19035.52690448 )19035.52668278
Hg )19648.85022305 )19648.89385550 )19648.89643688 )19648.89615637

404



The contraction coefficients for the SCF occupied
orbitals were obtained from calculations on the average
of the dns2 and dnþ1s1 configurations. The individual
configuration state functions (CSFs) in each configura-
tion were weighted by their degeneracy (2J þ 1), and the
weights were scaled so that the weight of each configu-
ration was equal.

To determine which primitive functions should be
uncontracted, a sequence of MR-SDCI calculations was
performed on Hf and Hg, in which different primitive
functions were included in the correlating space. For
each basis set size, the appropriate number of primitive
functions was used in the MRCI calculations. For
example, for 5s5p correlation in the tz basis sets, the
correlating set was 2s2p2d1f . Excitations into the 5d
shell were not considered in these calculations. The ratio
of the large component to the small component for each
primitive function was taken to be the free-particle ratio.
The primitive spinors so determined were Schmidt-
orthogonalized to the SCF occupied spinors and to each
other.

The selection of primitives that gave the lowest energy
was chosen, in most cases, to determine the contraction
pattern. Where there was a difference between the cal-
culations for Hg and for Hf, a compromise that gave the
smallest error for either element was chosen. This pro-
cedure was used for 5d6s correlation, 5s5p correlation,
and 4f correlation. In some cases, exponents were
optimized for Hf and Hg, and compared with SCF
exponents. For 5s5p correlation in the qz basis sets, an
extra g function was required, because the exponent of
the optimal g function was between those of the valence
correlating set and the 4f correlating set. The exponent

of this function was taken to be the geometric mean of
the smallest exponent of the 4f correlating set and the
largest exponent of the valence correlating set.

3 Primitive basis sets

The SCF basis set sizes were determined to be 22s17p12d
7f for the dz set, 29s21p15d9f for the tz set, and
34s26p19d12f for the qz set. With the p functions for the
6p orbitals and the correlating function substitutions in
the f space, the final SCF basis set sizes were
22s19p12d8f for the dz set, 29s24p15d10f for the tz
set, and 34s30p19d12f for the qz set.

Configuration average total energies for the dns2

configuration from calculations using these basis sets,
uncontracted, are compared with the numerical values in
Table 1. The energies for some elements in the qz sets go
below the numerical limit, because the kinetic balance

Table 2 Configuration average total SCF energies in hartrees for
uncontracted basis set calculations on the dns2 and dnþ1s1 config-
urations

Element Double-zeta Triple-zeta Quadruple-zeta

Hf )15088.70411652 )15088.73951401 )15088.74174148
Ta )15616.55560925 )15616.59124343 )15616.59347761
W )16156.11813380 )16156.15449203 )16156.15676974
Re )16707.56132953 )16707.59870249 )16707.60103664
Os )17271.03269868 )17271.07126136 )17271.07365508
Ir )17846.74847047 )17846.78846045 )17846.79092549
Pt )18434.84409714 )18434.88565056 )18434.88818973
Au )19035.50668978 )19035.54995160 )19035.55256991
Hg )19648.85022305 )19648.89385550 )19648.88773477

Table 3 Exponents of valence correlating and polarizing f func-
tions and 4f correlating g function for the double-zeta basis sets

Element Correlating f Polarizing f Correlating g

Hf 0.38547549 0.11195327 7.1448282
Ta 0.47476634 0.14059344 7.7301267
W 0.56143065 0.15925621 8.3273766
Re 0.64713929 0.19237380 8.9360799
Os 0.73285164 0.21776801 9.5561343
Ir 0.81914535 0.24625192 10.187605
Pt 0.90639763 0.26863666 10.830621
Au 0.99485802 0.30537602 11.485338
Hg 1.0847115 0.34059395 12.151916

Table 4 Exponents of valence correlating 2f 1g functions for the
triple-zeta basis sets

Element f f g

Hf 0.57254774 0.17022026 0.29847606
Ta 0.73694308 0.22091547 0.41192863
W 0.88976809 0.27458712 0.54155215
Re 1.0367851 0.32833657 0.67336535
Os 1.1791247 0.38129037 0.80311377
Ir 1.3182035 0.43354460 0.93231313
Pt 1.4557480 0.48555165 1.0637733
Au 1.5926764 0.53758925 1.2007077
Hg 1.77363780 0.61209188 1.3625828

Table 5 Exponents of valence polarizing 1f 1g functions for the
triple-zeta basis sets

Element f g

Hf 0.05060702 0.08873788
Ta 0.06622444 0.12348499
W 0.08473903 0.16712585
Re 0.10397999 0.21324619
Os 0.12329684 0.25970073
Ir 0.14258870 0.30662893
Pt 0.16195139 0.35481201
Au 0.18145695 0.40528481
Hg 0.21123618 0.47023460

Table 6 Exponents of 2g1h functions for 4f correlation for the
triple-zeta basis sets

Element g g h

Hf 13.085729 3.9047003 8.3954836
Ta 14.159365 4.2905061 9.0842505
W 15.246189 4.6826567 9.7873952
Re 16.347183 5.0813075 10.504277
Os 17.463582 5.4868196 11.234718
Ir 18.596282 5.8993841 11.978760
Pt 19.746166 6.3192532 12.736535
Au 20.914003 6.7466704 13.508228
Hg 22.100378 7.1817732 14.294006
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condition imposed on the exponents only ensures that
the energy is in error by no more than the order of c�4.
The energy optimization is in fact bounded from below,
and cannot collapse, but it does not converge to the
numerical Dirac–Fock energy. This problem probably
only matters for properties that are sensitive to the de-
tails of the wave function near the nucleus [26], and in
that case it would be preferable to replace the core part
of the basis set with an even-tempered sequence of
exponents. It should also be noted that obtaining the

exact energy is a necessary but not sufficient condition
for basis set convergence. It is always possible in a four-
component relativistic calculation to obtain the exact
energy with a wave function that is not exact.

Configuration average total Dirac–Hartree–Fock
(DHF) energies from calculations using the uncon-
tracted SCF basis sets for the average of the dns2 and
dnþ1s1 configurations, equally weighted, are given in
Table 2. The calculations that generated these energies
were used to provide DHF contraction coefficients.
These energies are provided as reference energies for the
contracted basis sets.

The valence correlating functions, valence polarizing
functions, and 4f core correlating functions for the dz
basis sets are presented in Table 3. The valence corre-
lating functions, valence polarizing functions, and 4f
core correlating functions for the tz basis sets are pre-
sented in Tables 4, 5, and 6. The valence correlating
functions, valence polarizing functions, g function for
5s5p correlation, and 4f core correlating functions for
the qz basis sets are presented in Tables 7, 8, 9, and 10.

4 Contraction patterns

The MR-SDCI calculations that were performed to
determine which functions to uncontract yielded the
contraction patterns described this section. The con-
tracted basis sets are formed by adding primitive
functions to the SCF occupied spinor or orbital set.
Three primary contraction patterns are described, for a
valence basis set, which correlates the 5d and 6s orbitals;
a valence plus outer core set which adds functions for 5s
and 5p correlation to the valence set, and a valence plus
outer core plus 4f set, which adds functions for 4f (and
other n ¼ 4 subshells) to the valence plus outer core set.
To any of these contractions, the relevant polarization
functions listed in Tables 3, 5, and 8 can be added.

Table 7 Exponents of valence
correlating 3f 2g1h functions
for the quadruple-zeta basis sets

Element f f f g g h

Hf 1.0876844 0.40757909 0.14970359 0.82870055 0.26099265 0.62848241
Ta 1.2637906 0.49140560 0.18408649 0.98076324 0.32068644 0.74058021
W 1.4303266 0.57199483 0.21756792 1.1247807 0.37896220 0.84961092
Re 1.5912492 0.65110611 0.25079181 1.2659138 0.43783171 0.95789072
Os 1.7495829 0.72991987 0.28417474 1.4067982 0.49855647 1.0667409
Ir 1.9067697 0.80900327 0.31790680 1.5483638 0.56189520 1.1763233
Pt 2.0640420 0.88882536 0.35215489 1.6921677 0.62926925 1.2875573
Au 2.2220809 0.96965516 0.38700265 1.8387652 0.70210737 1.4004498
Hg 2.3819196 1.0518378 0.42255517 1.9905625 0.78325320 1.5156635

Table 8 Exponents of valence polarizing 1f 1g1h functions for the
quadruple-zeta basis sets

Element f g h

Hf 0.05498605 0.08219756 0.19793554
Ta 0.06896103 0.10485690 0.24215226
W 0.08275564 0.12768031 0.28625173
Re 0.09659951 0.15142943 0.33129818
Os 0.11063582 0.17668387 0.37804326
Ir 0.12492500 0.20390958 0.42688315
Pt 0.13952467 0.23400741 0.47880610
Au 0.15445806 0.26809011 0.53474262
Hg 0.16975324 0.30819709 0.59638835

Table 9 Exponents of 1g functions for 5s5p correlation for the
quadruple-zeta basis sets

Element g exponent

Hf 1.4437094
Ta 1.6597629
W 1.8690385
Re 2.0766690
Os 2.2852082
Ir 2.4956504
Pt 2.7094025
Au 2.9270188
Hg 3.1504569

Table 10 Exponents of 3g2h1i
functions for 4f correlation for
the quadruple-zeta basis sets

Element g g g h h i

Hf 20.326934 7.2241572 2.5151387 14.305240 4.8113483 9.3531825
Ta 22.023548 7.9160691 2.8088460 15.476073 5.2835023 10.140874
W 23.729636 8.6130364 3.1057652 16.663028 5.7638600 10.942537
Re 25.450142 9.3169818 3.4066727 17.866799 6.2525369 11.758159
Os 27.188428 10.029244 3.7121005 19.088506 6.7498413 12.588012
Ir 28.947485 10.750981 4.0224855 20.328954 7.2560214 13.432450
Pt 30.729387 11.483021 4.3381409 21.589026 7.7713582 14.291836
Au 32.536284 12.226182 4.6593438 22.869254 8.2960313 15.166536
Hg 34.368292 12.980604 4.9862182 24.170855 8.8304238 16.056775
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The contraction patterns include an extra p function
in the valence space, because the 6p orbital is counted as
part of the valence space, even though it is not formally
occupied.

In the descriptions, functions are counted by
increasing exponent size, from the smallest. A designa-
tion of the basis set in terms of the contraction pattern is
given at the end of each description in parentheses. In
cases where linear dependence might be a problem,
alternative prescriptions are given.

4.1 Double-zeta basis sets

– Valence: To the SCF functions, add the second
s primitive, the first and second primitives from the
p and d sets, and the valence correlating f function.
(Hartree–Fock, HF plus 1s2p2d1f valence)

– Valence plus outer core: To the valence set, add the
fourth s primitive, the third p primitive and the third
d primitive. (HF plus 1s2p2d1f valence plus 1s1p1d
outer core)
If linear dependence problems are encountered in the
d space, delete the 5d orbital, or do not add the third
d primitive (on the grounds that the 5d orbital will be
used to correlate the 5s and 5p). As an option, delete
the 6s orbital and add the first s primitive.

– Valence plus outer core plus 4f: To the valence plus
outer core set, add the second and third f primitives,
the fourth d primitive, and the core correlating
g function. This choice reflects only 4f correlation
with a change in angular momentum of 1 unit. If it is
necessary to uncontract an s and p primitive, add the
fifth s and p primitives to the set. (HF plus 1s2p2d1f
valence plus 1s1p1d outer core plus 1d2f 1g core)

4.2 Triple-zeta basis sets

– Valence: To the SCF functions, add the first and third
s primitives, the first to third primitives from the p and
d sets, the first and second f primitives, and the
valence correlating g function. (HF plus 2s3p3d2f 1g
valence)

– Valence plus outer core: To the valence set, add the
fourth and sixth s and p primitives, the fourth
d primitive and the third f primitive. (HF plus
2s3p3d2f 1g valence plus 2s2p2d1f outer core; d sets
overlap)
If linear dependence problems are encountered in the
d space, use one of the following solutions:
– Delete the 5d orbital, and optionally also delete the

6s orbital and add the second s primitive.
– Do not add the fourth d primitive (on the grounds

that the 5d orbital will be used to correlate the 5s
and 5p).

– Add the fifth d primitive instead of the fourth
(which results in a loss of about 11–16 mEh in the
5s5p correlation energy)

– Valence plus outer core plus 4f: To the valence plus
outer core set, add the fourth f primitive, the fifth d
primitive, the seventh and eighth p and s primitives,
and the core correlating 2g1h set. (HF plus
2s3p3d2f 1g valence plus 2s2p2d1f outer core plus
2s2p2d2f 2g1h core; d and f sets overlap)
If linear dependence problems are encountered in the
d space, omit the fourth d primitive or add the sixth
and seventh d primitives instead of the fifth.

4.3 Quadruple-zeta basis sets

– Valence: To the SCF functions, add the first, second,
and fourth s primitives, the first to fourth p and d
primitives, the first to third f primitives, and the valence
correlating 2g1h set. (HF plus 3s4p4d3f 2g1h valence)

– Valence plus outer core: To the valence set add the
fifth, sixth, and eighth s primitives, the sixth, seventh
and eighth p primitives, the fifth and sixth d primi-
tives, the fourth f primitive, and the outer core
correlating g primitive. (HF plus 3s4p4d3f 2g1h
valence plus 3s3p3d2f 1g outer core; d and f sets
overlap.)
If linear dependence problems are encountered in the
d space, use one of the following solutions:
– Delete the 5d orbital, and optionally also delete the

6s orbital and add the third s primitive

Table 11 Energy levels in re-
ciprocal centimeters for the Pt
atom from valence multi-
reference singles and doubles
configuration interation(MR-
SDCI) calculations, for the
double-zeta, triple-zeta, and
quadruple-zeta basis sets. Ex-
perimental data from Ref. [27].
Valence CI includes only the
three valence configurations;
SDCI includes singles and
doubles from these three con-
figurations

J Valence CI SDCI Expt

Double-zeta Triple-zeta quadruple-zeta Double-zeta Triple-zeta quadruple-zeta

3 0 0 0 0 0 0 0
2 830 1048 1070 766 1147 1271 776
4 )854 )121 )45 375 2277 2726 824
0 17197 17480 17499 10207 8772 8456 6140
2 6129 6416 6446 6690 7408 7641 6567
3 8383 9135 9217 9316 11283 11547 10117
1 9177 9143 9138 9677 9690 9786 10132
2 14144 14472 14506 13948 14351 14515 13496
2 15683 16376 16451 15690 17036 17487 15502
0 25432 24891 24838 19031 19451 19744
1 20610 21318 21394 20106 20836 21245 18567
4 23295 23983 24056 24092 24926 25190 21967
2 27458 28121 28195 27195 28359 28655 26639
0 53193 53756 53819 49790 50133 50155
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– Do not add the fifth d primitive (on the grounds
that the 5d orbital will be used to correlate the 5s
and 5p).

– Add the fifth and seventh d primitives (which
results in a loss of about 1 mEh in the 5s5p
correlation energy). Note that not including the
fifth d primitive loses 4–8 mEh correlation energy.

– Valence plus outer core plus 4f: To the valence plus
outer core set, add the fifth and seventh f primitives,
the seventh, eighth and ninth d primitives, the 10th to
12th p and s primitives, and the core correlating
3g2h1i set. (HF plus 3s4p4d3f 2g1h valence plus
3s3p3d2f 1g outer core plus 3s3p3d3f 3g2h1i; d and
f sets overlap.)

5 Application

The basis sets have been used for calculations on the
energy levels of the Pt atom. SCF calculations were
performed with the contracted dz, tz, and qz basis sets.
MR-SDCI calculations were performed with the 5d86s2,
5d96s1, and 5d10 configurations as references. All single
and double excitations from the 5d and 6s orbitals into
the virtual space of the SCF calculations were included
in the CI calculations. The largest calculation, for J ¼ 4
in the qz basis, included about 56,000 CSFs.

The results reported in Table 11 are for two sets of
calculations: the valence CI among the three reference
configurations and the MR-SDCI calculations. The first
set shows the quality of the SCF basis sets. Deviations in
relative energies between the dz and tz basis sets range
up to 800 cm�1, (0.1 eV, 10 kJ mol�1). Between the tz
and qz basis sets, the maximum deviation is an order of
magnitude smaller, at 80 cm�1 (0.01 eV, 1 kJ mol�1). It is
well known that dz basis sets do not provide quantitative
accuracy. The MR-SDCI calculations show larger
deviations between the basis sets: up to 2000 cm�1 be-
tween dz and tz, and up to 400 cm�1 between tz and qz.
Valence correlation clearly improves the prediction of
the energy levels for all basis sets, but it is also clear that

there are still large discrepancies that must be addressed
by correlation of the 5s and 5p shells, and maybe the 4f
shell. The Breit interaction contributes a reduction of a
few hundred reciprocal centimeters to the excitation
energies; results for the dz basis are given in Table 12.

For an application of these basis sets to polarizabil-
ities of PtH2, AuH and Hg, see Ref. [28].

6 Discussion

The basis sets presented in this paper are intended to
form a series for which energy extrapolations [29,30,31]
can be performed to obtain higher accuracy. Although
the basis sets are not specifically designed for extrapo-
lation, by checking the energy gain as functions are
added to the basis set, the principle of adding one
function for each existing angular momentum and one
function of one unit higher angular momentum as the
basis set is enlarged has been adhered to.

It is in fact difficult to determine exponents that are
simultaneously optimal for both the SCF energy and the
correlation energy. In the qz basis set, for example, the
spacing of the three f functions for correlation is larger
than that generated by SCF optimization of exponents.
Replacing the correlating f functions with the SCF
functions results in an energy loss of 9 mEh for Hg and 5
mEh for Re. After reoptimization of the remaining SCF
exponents, the energy loss with respect to the SCF set is
56 lEh for Hg and 150 lEh for Re. The energy loss from
using the SCF f functions in the CI calculations was 1.6
mEh for Hg. Thus, substituting the f functions and re-
optimizing the remaining SCF functions is the best
compromise.

The alternative to optimizing correlating functions
independently, at least for the occupied orbitals, is to
construct ANO expansions [32], or atomic natural spi-
nor (ANS) expansions where the spin-dependent terms
are included in the SCF. The higher density of the SCF
exponents should provide at least as good a correlating
ANO set as is obtained from optimizing exponents of
primitive functions.

The use of primitive functions for correlation or basis
set flexibility creates no problems for methods such as
the Douglas–Kroll method. Using primitive functions as
an approximation to atomic 4-spinors can cause some
problems in correlated four-component calculations,
depending on the approach taken to determine the ratio
of the large and small components. The prescription
used with the NESC method [33] for example, is to use
the free-particle ratio. This prescription was used in the
MR-SDCI calculations used to optimize exponents. The
problem is that some kind of variational collapse can be
observed, and the problem is particularly noticeable for s
functions with larger exponents.

The problem has its roots in the potential used to
determine the large and small components—in this case,
a zero potential. This potential is not the same as that
used to determine the SCF functions. The primitive
function with free-particle large to small component
ratio is not an eigenfunction of the SCF potential, and
therefore is a mix of positive- and negative-energy ei-

Table 12 Energy levels in reciprocal centimeters for the Pt atom
from valence MR-SDCI calculations with the double-zeta basis set,
showing the effect of the Breit interaction. Experimental data from
Ref. [27]

J Coulomb +Breit Expt

3 0 0 0
2 766 750 776
4 375 351 824
0 10207 10208 6140
2 6690 6574 6567
3 9316 9068 10117
1 9677 9440 10132
2 13948 13741 13496
2 15690 15433 15502
0 19031 18898
1 20106 19857 18567
4 24092 23844 21967
2 27195 26798 26639
0 49790 49404
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genfunctions of the SCF potential, even though it is an
approximation to a positive-energy eigenfunction. When
this function is orthogonalized to the SCF functions, the
positive-energy components can be projected out to an
extent that leaves too much of the negative energy states
in the eigenfunction. The effective eigenvalue of the
orthogonalized function is now lower than it should be,
and it is energetically favorable to occupy this spinor
rather than the SCF spinors. The problem is more pro-
nounced for s functions because they penetrate to the
nucleus and are the most affected by relativity. The most
practical alternative is to use ANOs [32] or ANSs,
depending on the relativistic Hamiltonian in use.

One further warning is needed in the use of these
basis sets. The 5s shell is lower in energy than the 4f
shell. If calculations that include 5s5p correlation but not
4f correlation are performed, selection of the orbitals or
spinors to correlate based on the order of the eigenvalues
will lead to erroneous results, because one of the 4f
orbitals will be selected instead of the 5s orbital. It is
therefore necessary either to reorder the orbitals so that
selection of a contiguous range includes the 5s and not
the 4f , or to specify the list of orbitals explicitly to en-
sure inclusion of the desired orbitals.

The full tables of basis sets including spin-free rela-
tivistic SCF [34] and Dirac–Fock SCF coefficients are
available in ASCII format from the Dirac web site,
http://dirac.chem.sdu.dk. The spin-free relativistic SCF
coefficients include the Foldy–Wouthuysen transformed
large component coefficients that can be used in the
scalar one-electron approximation recently presented by
the author [35].

7 Internet archive

This paper includes an internet archive in ASCII format.
The archive contains the Dirac–Fock SCF coefficients
and the spin-free relativistic SCF coefficients, including
the Foldy-Wouthuysen transformed large component
coefficients, and the correlating and polarizing functions.
Prescriptions are given for the construction of various
basis sets.
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